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A Bluffer’s Guide to ... Sphericity

Andy Field

University of Sussex

The use of repeated measures, where the same subjects are tested under a number of conditions,

has numerous practical and statistical benefits. For one thing it reduces the error variance

caused by between-group individual differences, however, this reduction of error comes at a

price because repeated measures designs potentially introduce covariation between

experimental conditions (this is because the same people are used in each condition and so there

is likely to be some consistency in their behaviour across conditions). In between-group

ANOVA we have to assume that the groups we test are independent for the test to be accurate

(Scariano & Davenport, 1987, have documented some of the consequences of violating this

assumption). As such, the relationship between treatments in a repeated measures design creates

problems with the accuracy of the test statistic. The purpose of this article is to explain, as

simply as possible, the issues that arise in analysing repeated measures data with ANOVA:

specifically, what is sphericity and why is it important?

What is Sphericity?

Most of us are taught during our degrees that it is crucial to have homogeneity of variance

between conditions when analysing data from different subjects, but often we are left to assume

that this problem ‘goes away’ in repeated measures designs. This is not so, and the assumption

of sphericity can be likened to the assumption of homogeneity of variance in between-group

ANOVA.

Sphericity (denoted by ε  and sometimes referred to as circularity) is a more general condition

of compound symmetry. Imagine you had a population covariance matrix ΣΣ, where:
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Equation 1

This matrix represents two things: (1) the off-diagonal elements represent the covariances

between the treatments 1 ... n (you can think of this as the unstandardised correlation between

each of the repeated measures conditions); and (2) the diagonal elements signify the variances

within each treatment. As such, the assumption of homogeneity of variance between treatments

will hold when:
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Equation 2

(i.e.. when the diagonal components of the matrix are approximately equal). This is comparable

to the situation we would expect in a between-group design. However, in repeated measures

designs there is the added complication that the experimental conditions covary with each other.

The end result is that we have to consider the effect of these covariances when we analyse the

data, and specifically we need to assume that all of the covariances are approximately equal (i.e.

all of the conditions are related to each other to the same degree and so the effect of

participating in one treatment level after another is also equal). Compound Symmetry holds

when there is a pattern of constant variances along the diagonal (i.e. homogeneity of variance

— see Equation 2) and constant covariances off of the diagonal (i.e. the covariances between

treatments are equal — see Equation 3). While compound symmetry has been shown to be a

sufficient condition for conduction ANOVA on repeated measures data, it is not a necessary

condition.
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Equation 3

Sphericity is a less restrictive form of compound symmetry (in fact much of the early research

into repeated measures ANOVA confused compound symmetry with sphericity). Sphericity
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refers to the equality of variances of the differences between treatment levels. Whereas

compound symmetry concerns the covariation between treatments, sphericity is related to the

variance of the differences between treatments. So, if you were to take each pair of treatment

levels, and calculate the differences between each pair of scores, then it is necessary that these

differences have equal variances. Imagine a situation where there are 4 levels of a repeated

measures treatment (A, B, C, D). For sphericity to hold, one condition must be satisfied:

222222
DCDBCBDACABA ssssss −−−−−− ≈≈≈≈≈

Equation 4

Sphericity is violated when the condition in Equation 4 is not met (i.e. the differences between

pairs of conditions have unequal variances).

How is Sphericity Measured?

The simplest way to see whether or not the assumption of sphericity has been met is to calculate

the differences between pairs of scores in all combinations of the treatment levels. Once this has

been done, you can simply calculate the variance of these differences. E.g. Table 1 shows data

from an experiment with 3 conditions (for simplicity there are only 5 scores per condition). The

differences between pairs of conditions can then be calculated for each subject. The variance for

each set of differences can then be calculated. We saw above that sphericity is met when these

variances are roughly equal. For this data, sphericity will hold when:
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Condition A Condition B Condition C A-B A-C B-C

10 12 8 -2 2 5

15 15 12 0 3 3

25 30 20 -5 5 10

35 30 28 5 7 2

30 27 20 3 10 7

Variance: 15.7 10.3 10.3

Table 1: Hypothetical data to illustrate the calculation of the variance of the differences between conditions.

So there is, at least some deviation from sphericity because the variance of the differences

between conditions A and B is greater than the variance of the differences between conditions A

and C, and between B and C. However, we can say that this data has local circularity (or local

sphericity) because two of the variances are identical (). This means that for any multiple

comparisons involving these differences, the sphericity assumption has been met (for a

discussion of local circularity see Rouanet and Lépine, 1970). The deviation from sphericity in

the data in Table 1 does not seem too severe (all variances are roughly equal). This raises the

issue of how we assess whether violations from sphericity are severe enough to warrant action.

Assessing the Severity of Departures from Sphericity

Luckily the advancement of computer packages makes it needless to ponder the details of how

to assess departures from sphericity. SPSS produces a test known as Mauchley’s test, which

tests the hypothesis that the variances of the differences between conditions are equal.

Therefore, if Mauchley’s test statistic is significant (i.e. has a probability value less than 0.05)

we must conclude that there are significant differences between the variance of differences, ergo

the condition of sphericity has not been met. If, however, Mauchley’s test statistic is

nonsignificant (i.e. ) then it is reasonable to conclude that the variances of differences are not

significantly different (i.e. they are roughly equal). So, in short, if Mauchley’s test is significant

then we must be wary of the F-ratios produced by the computer.
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Figure 1: Output of Mauchley’s test from SPSS version 7.0

Figure 1 shows the result of Mauchley’s test on some fictitious data with three conditions (A, B

and C). The result of the test is highly significant indicating that the variance between the

differences were significantly different. The table also displays the degrees of freedom (the df

are simply 1−N , where N is the number of variances compared) and three estimates of

sphericity (see section on correcting for sphericity).

What is the Effect of Violating the Assumption of Sphericity?

Rouanet and Lépine (1970) provided a detailed account of the validity of the F-ratio when the

sphericity assumption does not hold. They argued that there are two different F-ratios that can

be used to assess treatment comparisons. The two types of F-ratio were labelled F′ and F″

respectively. F′ refers to an F-ratio derived from the mean squares of the comparison in

question and the interaction of the subjects with that comparison (i.e. the specific error term for

each comparison is used — this is the F-ratio normally used). F″ is derived not from the specific

error mean square but from the total error mean squares for all of the repeated measures

comparisons. Rouanet and Lépine (1970) argued that F′ is less powerful than F″ and so it may

be the case that this test statistic misses genuine effects. In addition, they showed that for F′ to

be valid the covariation matrix, ΣΣ, must obey local circularity (i.e. sphericity must hold for the

specific comparison in question) and Mendoza, Toothaker & Crain (1976) have supported this

by demonstrating that the F ratios of an L × J × K factorial design with two repeated measures

are valid only if local circularity holds. F" requires only overall circularity (i.e. the whole data

set must be circular) but because of the non-reciprocal nature of circularity and compound

symmetry, F″ does not require compound symmetry whilst F' does. So, given that F′ is the
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statistic generally used, the effect of violating sphericity is a loss of power (compared to when

F″ is used) and an test statistic (F-ratio) which simply cannot be validity compared to tabulated

values of the F-distribution.

Correcting for Violations of Sphericity

If data violates the sphericity assumption there are a number of corrections that can be applied

to produce a valid F-ratio. SPSS produces three corrections based upon the estimates of

sphericity advocated by Greenhouse and Geisser (1958) and Huynh and Feldt (1976). Both of

these estimates give rise to a correction factor that is applied to the degrees of freedom used to

asses the observed value of F. How each estimate is calculated is beyond the scope of this

article, for our purposes all we need know is that each estimate differs slightly from the others.

The Greenhouse-Geisser estimate (usually denoted as ε̂ ) varies between  (where k is the

number of repeated measures conditions) and 1. The closer that ε̂  is to 1.00, the more

homogeneous are the variances of differences, and hence the closer the data are to being

spherical. Figure 1 shows a situation with three conditions and hence the lower limit of ε̂  is 0.5,

it is clear that the calculated value of ε̂  is 0.503 which is very close to 0.5 and so represents a

substantial deviation from sphericity. Huynh and Feldt (1976) reported that when ε̂  > 0.75 too

many false null hypotheses fail to be rejected (i.e. the test is too conservative) and Collier,

Baker, Mandeville & Hayes (1967) showed that this was also true with ε̂  as high as 0.90.

Huynh and Feldt, therefore, proposed a correction to ε̂  to make it less conservative (usually

denoted as ε~ ). However, Maxwell and Delaney (1990) report that ε~  actually overestimates

sphericity. Stevens (1992) therefore recommends taking an average of the two and adjusting the

df  by this averaged value. Girden (1992) recommends that when ε̂  > 0.75 then the df should be

corrected using ε~ ; If ε̂  < 0.75, or nothing is known about sphericity at all, then the

conservative ε̂  should be used to adjust the df.
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Figure 2: Output of epsilon corrected F values from SPSS version 7.0.

Figure 2 shows a typical ANOVA table for a set of data that violated sphericity (the same data

used to generate Figure 1). The table in Figure 2 shows the F ratio and associated degrees of

freedom when sphericity is assumed, as can be seen, this results in a significant F statistic

indicating some difference(s) between the means of the three conditions. Underneath are the

corrected values (for each of the three estimates of sphericity). Notice that in all cases the F

ratios remain the same, it is the degrees of freedom that change (and hence the critical value of

F). The degrees of freedom are corrected by the estimate of sphericity. How this is done can be

seen in Table 2. The new degrees of freedom are then used to ascertain the critical value of F.

For this data this results in the observed F being nonsignificant at p < 0.05. This particular data

set illustrates how important it is to use a valid critical value of F, it can mean the difference

between a statistically significant result and a nonsignificant result. More importantly, it can

mean the difference between making a Type I error and not.

Estimate of

Sphericity Used

Value of

Estimate

Term df Correction New df

None Effect 2

Error 8

0.503 Effect 2 2503.0 × 1.006

Error 8 8503.0 × 4.024

0.506 Effect 2 2506.0 × 1.012

Error 8 8506.0 × 4.048

Table 2: Shows how the sphericity corrections are applied to the degrees of freedom.



BPS-MSC Newsletter 6 (1) Page 20

Multivariate vs. Univariate Tests

A final option, when you have data that violates sphericity, is to use multivariate test statistics

(MANOVA) because they are not dependent upon the assumption of sphericity (see O’Brien &

Kaiser, 1985). There is a trade off of test power between univariate and multivariate approaches

although some authors argue that this can be overcome with suitable mastery of the techniques

(O’Brien and Kaisser, 1985). MANOVA avoids the assumption of sphericity (and all the

corresponding considerations about appropriate F ratios and corrections) by using a specific

error term for contrasts with 1 df and hence, each contrast is only ever associated with its

specific error term (rather than the pooled error terms used in ANOVA). Davidson (1972)

compared the power of adjusted univariate techniques with those of Hotellings T2 (a MANOVA

test statistic) and found that the univariate technique was relatively powerless to detect small

reliable changes between highly correlated conditions when other less correlated conditions

were also present. Mendoza, Toothaker and Nicewander (1974) conducted a Monte Carlo study

comparing univariate and multivariate techniques under violations of compound symmetry and

normality and found that “as the degree of violation of compound symmetry increased, the

empirical power for the multivariate tests also increased. In contrast, the power for the

univariate tests generally decreased” (p 174). Maxwell and Delaney (1990) noted that the

univariate test is relatively more powerful than the multivariate test as n decreases and proposed

that “the multivariate approach should probably not be used if n is less than a + 10 (a is the

number of levels for repeated measures)” (p 602). As a general rule it seems that when you have

a large violation of sphericity (ε < 0.7) and your sample size is greater than (a + 10) then

multivariate procedures are more powerful whilst with small sample sizes or when sphericity

holds (ε > 0.7) the univariate approach is preferred (Stevens, 1992). It is also worth noting that

the power of MANOVA increases and decreases as a function of the correlations between

dependent variables (Cole et al, 1994) and so the relationship between treatment conditions

must be considered also.

Multiple Comparisons

So far, I have discussed the effects of sphericity on the omnibus ANOVA. As a final flurry

some discussion of the effects on multiple comparison procedures is warranted. Boik (1981)

provided an estimable account of the effects of nonsphericity on a priori tests in repeated

measures designs, and concluded that even very small departures from sphericity produce large

biases in the F-test and recommends against using these tests for repeated measures contrasts.
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When experimental error terms are small, the power to detect relatively strong effects can be as

low as .05 (when sphericity = .80). He argues that the situation for a priori comparisons cannot

be improved and concludes by recommending a multivariate analogue. Mitzel and Games

(1981) found that when sphericity does not hold (ε < 1) the pooled error term conventionally

employed in pairwise comparisons resulted in nonsignificant differences between two means

declared significant (i.e. a lenient Type 1 error rate) or undetected differences (a conservative

Type 1 error rate). They therefore recommended the use of separate error terms for each

comparison. Maxwell (1980) systematically tested the power and alpha levels for 5 a priori

tests under repeated measures conditions. The tests assessed were Tukey’s Wholly Significant

Difference (WSD) test which uses a pooled error term, Tukey’s procedure but with a separate

error term with either ( 1−n ) df [labelled SEP1] or ( )( )11 −− kn  df [labelled SEP2],

Bonferroni’s procedure (BON), and a multivariate approach — the Roy-Bose Simultaneous

Confidence Interval (SCI). Maxwell tested these a priori procedures varying the sample size,

number of levels of the repeated factor and departure from sphericity. He found that the

multivariate approach was always "too conservative for practical use" (p 277) and this was most

extreme when n (the number of subjects) is small relative to k (the number of conditions).

Tukey’s test inflated the alpha rate as the covariance matrix departs from sphericity and even

when a separate error term was used (SEP1) alpha was slightly inflated as k increased whilst

SEP2 also lead to unacceptably high alpha levels. The Bonferroni method, however, was

extremely robust (although slightly conservative) and controlled alpha levels regardless of the

manipulation. Therefore, in terms of Type I error rates the Bonferroni method was best. In terms

of test power (the Type II error rate) for a small sample (n = 8) WSD was the most powerful

under conditions of nonsphericity. This advantage was severely reduced when n = 15. Keselman

and Keselman (1988) extended Maxwell’s work and also investigated unbalanced designs. They

too used Tukey’s WSD, a modified WSD (with non-pooled error variance), Bonferroni t-

statistics, and a multivariate approach, and looked at the same factors as Maxwell (with the

addition of unequal samples). They found that when unweighted means were used (with

unbalanced designs) none of the four tests could control the Type 1 error rate. When weighted

means were used only the multivariate tests could limit alpha rates although Bonferroni t

statistics were considerably better than the two Tukey methods. In terms of power they

concluded that “as the number of repeated treatment levels increases, BON is substantially more

powerful than SCI” (p 223).
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So, in terms of these studies, the Bonferroni method seems to be generally the most robust of

the univariate techniques, especially in terms of power and control of the Type I error rate.

Conclusion

It is more often the rule than the exception that sphericity is violated in repeated measures

designs. For this reason, all repeated measures designs should be exposed to tests of violations

of sphericity. If sphericity is violated then the researcher must decide whether a multivariate or

univariate analysis is preferred (with due consideration to the trade off between test validity on

one hand and power on the other). If univariate methods are chosen then the omnibus ANOVA

must be corrected appropriately depending on the level of departure from sphericity. Finally, if

pairwise comparisons are required the Bonferroni method should probably be used to control

the Type 1 error rate. Finally, to ensure that the group sizes are equal otherwise even the

Bonferroni technique is subject to inflations of alpha levels.
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